Dada una matriz cuadrada A, se llama matriz adjunta de A, y se representa por Adj(A), a la matriz de los adjuntos, Adj(A) = (Aij).
Si tenemos una matriz tal que det (A) ¹ 0, se verifica:
Esto es fácil probarlo puesto que sabemos que la suma de los productos de los elementos de una fila por sus adjuntos es el valor del determinante, y que la suma de los productos de los elementos de una fila por los adjuntos de otra fila diferente es 0 (esto sería el desarrollo de un determinante que tiene dos filas iguales por los adjuntos de una de ellas).
0 comentarios :
Publicar un comentario